# Snowflower Calc User Guide

Snowflower Calc supports many functions, and functions not located on the virtual keypad can be used by directly entering them on the keyboard.

## Operators

 + Addition - Subtraction * Multiplication / Division % Modulo ^ Raise to Higher Power, $\displaystyle x^y$ ! Factorial, $\displaystyle x!$

## Constants

 pi The constant π (3.14159265358979323846264338328…​) e The constant e (2.718281828459045235360287471353…​) euler The constant euler (0.577215664901532860606512090082…​)

## Variables

 ans The result of a previous expression

## Functions

 sqrt(x) Square Root of Number x, $\displaystyle \sqrt{x}$ cbrt(x) Cube Root of Number x, $\displaystyle \sqrt[3]{x}$ exp(x) Exponential value of x ln(x) Natural Logarithm (base e) log(x,y) Logarithm of Number x to Base y mod(x,y) x mod y
 ceil(x) Ceiling, Round towards plus infinity floor(x) Floor, Round towards minus infinity round(x) Round towards the nearest integer sign(x) The sign of x. Returns 1 if x>0, 0 if x=0 and -1 if x<0
 sin(x) Sine of x cos(x) Cosine of x tan(x) Tangent of x asin(x) Arc Sinus of x (sin-1) acos(x) Arc Cosine of x (cos-1) atan(x) Arc Tangent of x (tan-1) sinh(x) Hyperbolic Sinus of x cosh(x) Hyperbolic Cosine of x tanh(x) Hyperbolic Tangent of x asinh(x) Arc Hyperbolic Sinus of x acosh(x) Arc Hyperbolic Cosine of x atanh(x) Arc Hyperbolic Tangent of x csc(x) Cosecant of x, Defined as: $\displaystyle csc(x) = \frac{1}{\sin{x}}$ sec(x) Secant of x, Defined as: $\displaystyle sec(x) = \frac{1}{\cos{x}}$ cot(x) Cotangent of x, Defined as: $\displaystyle cot(x) = \frac{1}{\tan{x}}$ sinpi(x) Defined as: $\displaystyle sinpi(x) = sin(x \pi)$ cospi(x) Defined as: $\displaystyle cospi(x) = cos(x \pi)$ tanpi(x) Defined as: $\displaystyle tanpi(x) = tan(x \pi)$
 npr(n,r) Permutations, Defined as: $\displaystyle _n \mathrm{P} _r = \frac{n!}{(n−r)!}$ ncr(n,r) Combinations from n choose r, Defined as: $\displaystyle _n \mathrm{C} _r = \frac{n!}{r!(n−r)!}$
 min(x,y) Minimum max(x,y) Maximum gamma(x) the gamma function is an extension of the factorial function. lcm(x, y) Least common multiple. gcd(x, y) Greatest common divisor.