TCP(4) FreeBSD Kernel Interfaces Manual TCP(4)


tcpInternet Transmission Control Protocol


#include < sys/types.h>
#include < sys/socket.h>
#include < netinet/in.h>
#include < netinet/tcp.h>

socket( AF_INET, SOCK_STREAM, 0);


The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is a byte-stream protocol used to support the SOCK_STREAM abstraction. TCP uses the standard Internet address format and, in addition, provides a per-host collection of “port addresses”. Thus, each address is composed of an Internet address specifying the host and network, with a specific TCP port on the host identifying the peer entity.

Sockets utilizing the TCP protocol are either “active” or “passive”. Active sockets initiate connections to passive sockets. By default, TCP sockets are created active; to create a passive socket, the listen(2) system call must be used after binding the socket with the bind(2) system call. Only passive sockets may use the accept(2) call to accept incoming connections. Only active sockets may use the connect(2) call to initiate connections.

Passive sockets may “underspecify” their location to match incoming connection requests from multiple networks. This technique, termed “wildcard addressing”, allows a single server to provide service to clients on multiple networks. To create a socket which listens on all networks, the Internet address INADDR_ANY must be bound. The TCP port may still be specified at this time; if the port is not specified, the system will assign one. Once a connection has been established, the socket's address is fixed by the peer entity's location. The address assigned to the socket is the address associated with the network interface through which packets are being transmitted and received. Normally, this address corresponds to the peer entity's network.

TCP supports a number of socket options which can be set with setsockopt(2) and tested with getsockopt(2):

Information about a socket's underlying TCP session may be retrieved by passing the read-only option TCP_INFO to getsockopt(2). It accepts a single argument: a pointer to an instance of struct tcp_info.

This API is subject to change; consult the source to determine which fields are currently filled out by this option. FreeBSD specific additions include send window size, receive window size, and bandwidth-controlled window space.

Select or query the congestion control algorithm that TCP will use for the connection. See mod_cc(4) for details.
This setsockopt(2) option accepts a per-socket timeout argument of u_int in seconds, for new, non-established TCP connections. For the global default in milliseconds see keepinit in the MIB Variables section further down.
This setsockopt(2) option accepts an argument of u_int for the amount of time, in seconds, that the connection must be idle before keepalive probes (if enabled) are sent for the connection of this socket. If set on a listening socket, the value is inherited by the newly created socket upon accept(2). For the global default in milliseconds see keepidle in the MIB Variables section further down.
This setsockopt(2) option accepts an argument of u_int to set the per-socket interval, in seconds, between keepalive probes sent to a peer. If set on a listening socket, the value is inherited by the newly created socket upon accept(2). For the global default in milliseconds see keepintvl in the MIB Variables section further down.
This setsockopt(2) option accepts an argument of u_int and allows a per-socket tuning of the number of probes sent, with no response, before the connection will be dropped. If set on a listening socket, the value is inherited by the newly created socket upon accept(2). For the global default see the keepcnt in the MIB Variables section further down.
Under most circumstances, TCP sends data when it is presented; when outstanding data has not yet been acknowledged, it gathers small amounts of output to be sent in a single packet once an acknowledgement is received. For a small number of clients, such as window systems that send a stream of mouse events which receive no replies, this packetization may cause significant delays. The boolean option TCP_NODELAY defeats this algorithm.
By default, a sender- and receiver-TCP will negotiate among themselves to determine the maximum segment size to be used for each connection. The TCP_MAXSEG option allows the user to determine the result of this negotiation, and to reduce it if desired.
TCP usually sends a number of options in each packet, corresponding to various TCP extensions which are provided in this implementation. The boolean option TCP_NOOPT is provided to disable TCP option use on a per-connection basis.
By convention, the sender-TCP will set the “push” bit, and begin transmission immediately (if permitted) at the end of every user call to write(2) or writev(2). When this option is set to a non-zero value, TCP will delay sending any data at all until either the socket is closed, or the internal send buffer is filled.
This option enables the use of MD5 digests (also known as TCP-MD5) on writes to the specified socket. Outgoing traffic is digested; digests on incoming traffic are verified if the net.inet.tcp.signature_verify_input sysctl is nonzero. The current default behavior for the system is to respond to a system advertising this option with TCP-MD5; this may change.

One common use for this in a FreeBSD router deployment is to enable based routers to interwork with Cisco equipment at peering points. Support for this feature conforms to RFC 2385. Only IPv4 ( AF_INET) sessions are supported.

In order for this option to function correctly, it is necessary for the administrator to add a tcp-md5 key entry to the system's security associations database (SADB) using the setkey(8) utility. This entry must have an SPI of 0x1000 and can therefore only be specified on a per-host basis at this time.

If an SADB entry cannot be found for the destination, the outgoing traffic will have an invalid digest option prepended, and the following error message will be visible on the system console: tcp_signature_compute: SADB lookup failed for %d.%d.%d.%d.

The option level for the setsockopt(2) call is the protocol number for TCP, available from getprotobyname(3), or IPPROTO_TCP. All options are declared in < netinet/tcp.h>.

Options at the IP transport level may be used with TCP; see ip(4). Incoming connection requests that are source-routed are noted, and the reverse source route is used in responding.

The default congestion control algorithm for TCP is cc_newreno(4). Other congestion control algorithms can be made available using the mod_cc(4) framework.

MIB Variables

The TCP protocol implements a number of variables in the net.inet.tcp branch of the sysctl(3) MIB.
( rfc1323) Implement the window scaling and timestamp options of RFC 1323 (default is true).
( mssdflt) The default value used for the maximum segment size (“MSS”) when no advice to the contrary is received from MSS negotiation.
( sendspace) Maximum TCP send window.
( recvspace) Maximum TCP receive window.
Log any connection attempts to ports where there is not a socket accepting connections. The value of 1 limits the logging to SYN (connection establishment) packets only. That of 2 results in any TCP packets to closed ports being logged. Any value unlisted above disables the logging (default is 0, i.e., the logging is disabled).
The Maximum Segment Lifetime, in milliseconds, for a packet.
Timeout, in milliseconds, for new, non-established TCP connections. The default is 75000 msec.
Amount of time, in milliseconds, that the connection must be idle before keepalive probes (if enabled) are sent. The default is 7200000 msec (2 hours).
The interval, in milliseconds, between keepalive probes sent to remote machines, when no response is received on a keepidle probe. The default is 75000 msec.
Number of probes sent, with no response, before a connection is dropped. The default is 8 packets.
Assume that SO_KEEPALIVE is set on all TCP connections, the kernel will periodically send a packet to the remote host to verify the connection is still up.
Certain ICMP unreachable messages may abort connections in SYN-SENT state.
Flush packets in the TCP reassembly queue if the system is low on mbufs.
If enabled, disable sending of RST when a connection is attempted to a port where there is not a socket accepting connections. See blackhole(4).
Delay ACK to try and piggyback it onto a data packet.
Maximum amount of time, in milliseconds, before a delayed ACK is sent.
Enable Path MTU Discovery.
Size of the TCP control-block hash table (read-only). This may be tuned using the kernel option TCBHASHSIZE or by setting net.inet.tcp.tcbhashsize in the loader(8).
Number of active process control blocks (read-only).
Determines whether or not SYN cookies should be generated for outbound SYN-ACK packets. SYN cookies are a great help during SYN flood attacks, and are enabled by default. (See syncookies(4).)
The interval (in seconds) specifying how often the secret data used in RFC 1948 initial sequence number calculations should be reseeded. By default, this variable is set to zero, indicating that no reseeding will occur. Reseeding should not be necessary, and will break TIME_WAIT recycling for a few minutes.
rexmit_min, rexmit_slop
Adjust the retransmit timer calculation for TCP. The slop is typically added to the raw calculation to take into account occasional variances that the SRTT (smoothed round-trip time) is unable to accommodate, while the minimum specifies an absolute minimum. While a number of TCP RFCs suggest a 1 second minimum, these RFCs tend to focus on streaming behavior, and fail to deal with the fact that a 1 second minimum has severe detrimental effects over lossy interactive connections, such as a 802.11b wireless link, and over very fast but lossy connections for those cases not covered by the fast retransmit code. For this reason, we use 200ms of slop and a near-0 minimum, which gives us an effective minimum of 200ms (similar to Linux).
Enable the Limited Transmit algorithm as described in RFC 3042. It helps avoid timeouts on lossy links and also when the congestion window is small, as happens on short transfers.
Enable support for RFC 3390, which allows for a variable-sized starting congestion window on new connections, depending on the maximum segment size. This helps throughput in general, but particularly affects short transfers and high-bandwidth large propagation-delay connections.
Enable support for RFC 2018, TCP Selective Acknowledgment option, which allows the receiver to inform the sender about all successfully arrived segments, allowing the sender to retransmit the missing segments only.
Maximum number of SACK holes per connection. Defaults to 128.
Maximum number of SACK holes per system, across all connections. Defaults to 65536.
When a TCP connection enters the TIME_WAIT state, its associated socket structure is freed, since it is of negligible size and use, and a new structure is allocated to contain a minimal amount of information necessary for sustaining a connection in this state, called the compressed TCP TIME_WAIT state. Since this structure is smaller than a socket structure, it can save a significant amount of system memory. The net.inet.tcp.maxtcptw MIB variable controls the maximum number of these structures allocated. By default, it is initialized to kern.ipc.maxsockets / 5.
Suppress creating of compressed TCP TIME_WAIT states for connections in which both endpoints are local.
Recycle TCP FIN_WAIT_2 connections faster when the socket is marked as SBS_CANTRCVMORE (no user process has the socket open, data received on the socket cannot be read). The timeout used here is finwait2_timeout.
Timeout to use for fast recycling of TCP FIN_WAIT_2 connections. Defaults to 60 seconds.
Enable support for TCP Explicit Congestion Notification (ECN). ECN allows a TCP sender to reduce the transmission rate in order to avoid packet drops.
Number of retries (SYN or SYN/ACK retransmits) before disabling ECN on a specific connection. This is needed to help with connection establishment when a broken firewall is in the network path.


A socket operation may fail with one of the following errors returned:
when trying to establish a connection on a socket which already has one;
when the system runs out of memory for an internal data structure;
when a connection was dropped due to excessive retransmissions;
when the remote peer forces the connection to be closed;
when the remote peer actively refuses connection establishment (usually because no process is listening to the port);
when an attempt is made to create a socket with a port which has already been allocated;
when an attempt is made to create a socket with a network address for which no network interface exists;
when an attempt is made to bind or connect a socket to a multicast address.


getsockopt(2), socket(2), sysctl(3), blackhole(4), inet(4), intro(4), ip(4), mod_cc(4), siftr(4), syncache(4), setkey(8)

V. Jacobson, R. Braden, and D. Borman, TCP Extensions for High Performance, RFC 1323.

A. Heffernan, Protection of BGP Sessions via the TCP MD5 Signature Option, RFC 2385.

K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit Congestion Notification (ECN) to IP, RFC 3168.


The TCP protocol appeared in 4.2BSD. The RFC 1323 extensions for window scaling and timestamps were added in 4.4BSD. The TCP_INFO option was introduced in Linux 2.6 and is subject to change.
November 8, 2013 FreeBSD